<u id="6r3yn"><optgroup id="6r3yn"><strong id="6r3yn"></strong></optgroup></u><tr id="6r3yn"></tr> <dfn id="6r3yn"></dfn>

  1. <tt id="6r3yn"><b id="6r3yn"></b></tt>
  2. 色狠狠色噜噜AV一区,欧美熟妇性XXXX欧美熟人多毛 ,无码成人免费全部观看,日本高清色WWW在线安全,久久久国产99久久国产久麻豆 ,亚洲综合在线日韩av,成在人线无码aⅴ免费视频,日韩加勒比一本无码精品

    高二數(shù)學(xué)知識(shí)點(diǎn)

    時(shí)間:2022-07-15 17:18:20 總結(jié) 我要投稿

    高二數(shù)學(xué)知識(shí)點(diǎn)

      在學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)就是學(xué)習(xí)的重點(diǎn)。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編收集整理的高二數(shù)學(xué)知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。

    高二數(shù)學(xué)知識(shí)點(diǎn)

      高二數(shù)學(xué)知識(shí)點(diǎn)1

      數(shù)列定義:

      如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

      前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

      以上n均屬于正整數(shù)。

      解釋說明:

      從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。

      在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。

      且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d

      它可以看作等差數(shù)列廣義的通項(xiàng)公式。

      推論公式:

      從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

      若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。

      基本公式:

      和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2

      項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1

      首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)

      末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)

      末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差

      高二數(shù)學(xué)知識(shí)點(diǎn)2

      分層抽樣

      先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

      兩種方法

      1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

      2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

      2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

      一、分層標(biāo)準(zhǔn)

      (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

      (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

      (3)以那些有明顯分層區(qū)分的變量作為分層變量。

      分層的比例問題

      (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

      (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

      (1)定義:

      對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn)。

      (2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:

      方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。

      (3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):

      如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。

      二、二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系

      三、二分法

      對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

      1、函數(shù)的零點(diǎn)不是點(diǎn):

      函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。

      2、對(duì)函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):

      (1)、f(x)在[a,b]上連續(xù);

      (2)、f(a)·f(b)<0;

      (3)、在(a,b)內(nèi)存在零點(diǎn)。

      這是零點(diǎn)存在的一個(gè)充分條件,但不必要。

      3、對(duì)于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào)。

      利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。

      四、判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法

      1、解方程法:

      令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。

      2、零點(diǎn)存在性定理法:

      利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。

      3、數(shù)形結(jié)合法:

      轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題.先畫出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。

      已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法

      1、直接法:

      直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

      2、分離參數(shù)法:

      先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

      3、數(shù)形結(jié)合法:

      先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

      高二數(shù)學(xué)知識(shí)點(diǎn)3

      反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sin_在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsin_,表示一個(gè)正弦值為_的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

      反函數(shù)求導(dǎo)方法

      若F(_),G(_)互為反函數(shù),

      則:F(_)_G(_)=1

      E.G.:y=arcsin__=siny

      y__=1(arcsin_)_(siny)=1

      y=1/(siny)=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-_^2)

      其余依此類推

      高二數(shù)學(xué)知識(shí)點(diǎn)4

      一、導(dǎo)數(shù)的應(yīng)用

      1、用導(dǎo)數(shù)研究函數(shù)的最值

      確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。

      學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。

      2、生活中常見的函數(shù)優(yōu)化問題

      1)費(fèi)用、成本最省問題

      2)利潤(rùn)、收益最大問題

      3)面積、體積最(大)問題

      二、推理與證明

      1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相似特征得出所需要的相似特征。

      2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。

      三、不等式

      對(duì)于含有參數(shù)的一元二次不等式解的討論

      1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

      2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。

      通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

      四、坐標(biāo)平面上的直線

      1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。

      2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。

      3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。

      五、圓錐曲線

      1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。

      2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線

      上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。

      3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。

      高二數(shù)學(xué)知識(shí)點(diǎn)5

      一、隨機(jī)事件

      主要掌握好(三四五)

      (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

      (2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

      (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。

      二、概率定義

      (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;

      (3)幾何概率:樣本空間中的元素有無窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;

      (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

      三、概率性質(zhì)與公式

      (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

      (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

      (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

      (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

      (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

      高二數(shù)學(xué)知識(shí)點(diǎn)6

      1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱幾何概型。

      2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積);

      試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)

      3、幾何概型的特點(diǎn):

      1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);

      2)每個(gè)基本事件出現(xiàn)的可能性相等、

      4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。

      通過以上對(duì)于幾何概型的基本知識(shí)點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個(gè)特點(diǎn),無限性是指在一次試驗(yàn)中,基本事件的個(gè)數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機(jī)事件A的概率可以用“事件A包含的基本事件所占的圖形的長(zhǎng)度、面積(體積)和角度等”與“試驗(yàn)的基本事件所占總長(zhǎng)度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

      高二數(shù)學(xué)知識(shí)點(diǎn)7

      考點(diǎn)一:向量的概念、向量的基本定理

      【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

      注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無法比較大小,它們的模可比較大小。

      考點(diǎn)二:向量的運(yùn)算

      【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

      【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

      考點(diǎn)三:定比分點(diǎn)

      【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解。

      【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

      考點(diǎn)四:向量與三角函數(shù)的綜合問題

      【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

      【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

      考點(diǎn)五:平面向量與函數(shù)問題的交匯

      【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

      【命題規(guī)律】命題多以解答題為主,屬中檔題。

      考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

      【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.

      【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

      高二數(shù)學(xué)知識(shí)點(diǎn)8

      考點(diǎn)一:求導(dǎo)公式。

      例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的'值是3

      考點(diǎn)二:導(dǎo)數(shù)的幾何意義。

      例2.已知函數(shù)yf(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y

      1x2,則f(1)f(1)2,3)處的切線方程是例3.曲線yx32x24x2在點(diǎn)

      點(diǎn)評(píng):以上兩小題均是對(duì)導(dǎo)數(shù)的幾何意義的考查。

      考點(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。

      例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點(diǎn)x0,y0x00,求直線l的方程及切點(diǎn)坐標(biāo)。

      點(diǎn)評(píng):本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時(shí)應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個(gè)條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過該點(diǎn)存在切線的充分條件,而不是必要條件。

      考點(diǎn)四:函數(shù)的單調(diào)性。

      例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。

      點(diǎn)評(píng):本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對(duì)于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識(shí)。

      考點(diǎn)五:函數(shù)的極值。

      例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時(shí)取得極值。

      (1)求a、b的值;

      (2)若對(duì)于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。

      點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:

      ①求導(dǎo)數(shù)fx;

      ②求fx0的根;③將fx0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由fx在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。

      高二數(shù)學(xué)知識(shí)點(diǎn)9

      (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

      (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

      (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

      (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

      (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

      (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。

      然說難度比較大,我建議考生,采取分部得分整個(gè)試

      高二數(shù)學(xué)知識(shí)點(diǎn)10

      高二年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

      基本概念

      公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。

      公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。

      公理3:過不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。

      推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。

      推論2:經(jīng)過兩條相交直線,有且只有一個(gè)平面。

      推論3:經(jīng)過兩條平行直線,有且只有一個(gè)平面。

      公理4:平行于同一條直線的兩條直線互相平行。

      等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。

      高二年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

      空間兩條直線只有三種位置關(guān)系:平行、相交、異面

      按是否共面可分為兩類:

      (1)共面:平行、相交

      (2)異面:

      異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

      異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

      兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法

      兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法

      若從有無公共點(diǎn)的角度看可分為兩類:

      (1)有且僅有一個(gè)公共點(diǎn)——相交直線;

      (2)沒有公共點(diǎn)——平行或異面

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

      ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

      ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

      直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

      空間向量法(找平面的法向量)

      規(guī)定:

      a、直線與平面垂直時(shí),所成的角為直角,

      b、直線與平面平行或在平面內(nèi),所成的角為0°角

      由此得直線和平面所成角的取值范圍為[0°,90°]

      最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

      三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

      直線和平面垂直

      直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

      直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

      直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

      直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

      直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

      直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

      高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)梳理

      簡(jiǎn)單隨機(jī)抽樣的定義:

      一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。

      簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):

      (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為

      (2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

      (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。

      (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

      簡(jiǎn)單抽樣常用方法:

      (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。

      (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開始的數(shù)字;第三步,獲取樣本號(hào)碼概率。

      高二數(shù)學(xué)知識(shí)點(diǎn)11

      反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

      反函數(shù)求導(dǎo)方法

      若F(X),G(X)互為反函數(shù),

      則:F'(X)_'(X)=1

      E.G.:y=arcsinx=siny

      y'_'=1(arcsinx)'_siny)'=1

      y'=1/(siny)'=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-x^2)

      其余依此類推

      高二數(shù)學(xué)知識(shí)點(diǎn)12

      1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      1.2空間幾何體的三視圖和直觀圖

      11三視圖:

      正視圖:從前往后

      側(cè)視圖:從左往右

      俯視圖:從上往下

      22畫三視圖的原則:

      長(zhǎng)對(duì)齊、高對(duì)齊、寬相等

      33直觀圖:斜二測(cè)畫法

      44斜二測(cè)畫法的步驟:

      (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

      (2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;

      (3).畫法要寫好。

      5用斜二測(cè)畫法畫出長(zhǎng)方體的步驟:

      (1)畫軸

      (2)畫底面

      (3)畫側(cè)棱

      (4)成圖

      1.3空間幾何體的表面積與體積

      (一)空間幾何體的表面積

      1、棱柱、棱錐的表面積:各個(gè)面面積之和

      2、圓柱的表面積

      3、圓錐的表面積

      4、圓臺(tái)的表面積

      5、球的表面積

      (二)空間幾何體的體積

      1、柱體的體積

      2、錐體的體積

      3、臺(tái)體的體積

      4、球體的體積

      高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線與平面的位置關(guān)系

      2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

      2.1.1

      1平面含義:平面是無限延展的

      2平面的畫法及表示

      (1)平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(zhǎng)(如圖)

      (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。

      3三個(gè)公理:

      (1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)

      符號(hào)表示為

      A∈L

      B∈L=>Lα

      A∈α

      B∈α

      公理1作用:判斷直線是否在平面內(nèi)

      (2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。

      符號(hào)表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面α,

      使A∈α、B∈α、C∈α。

      公理2作用:確定一個(gè)平面的依據(jù)。

      (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

      符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L

      公理3作用:判定兩個(gè)平面是否相交的依據(jù)

      2.1.2空間中直線與直線之間的位置關(guān)系

      1、空間的兩條直線有如下三種關(guān)系:

      共面直線

      相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);

      平行直線:同一平面內(nèi),沒有公共點(diǎn);

      異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。

      2、公理4:平行于同一條直線的兩條直線互相平行。

      符號(hào)表示為:設(shè)a、b、c是三條直線

      a∥b

      c∥b

      強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

      公理4作用:判斷空間兩條直線平行的依據(jù)。

      3、等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

      4、注意點(diǎn):

      ①a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上;

      ②兩條異面直線所成的角θ∈(0,);

      ③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;

      ④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

      ⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

      2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

      1、直線與平面有三種位置關(guān)系:

      (1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

      (2)直線與平面相交——有且只有一個(gè)公共點(diǎn)

      (3)直線在平面平行——沒有公共點(diǎn)

      指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

      aαa∩α=Aa∥α

      2.2.直線、平面平行的判定及其性質(zhì)

      2.2.1直線與平面平行的判定

      1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

      簡(jiǎn)記為:線線平行,則線面平行。

      符號(hào)表示:

      aα

      bβ=>a∥α

      a∥b

      2.2.2平面與平面平行的判定

      1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。

      符號(hào)表示:

      aβ

      bβ

      a∩b=Pβ∥α

      a∥α

      b∥α

      2、判斷兩平面平行的方法有三種:

      (1)用定義;

      (2)判定定理;

      (3)垂直于同一條直線的兩個(gè)平面平行。

      2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

      1、定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

      簡(jiǎn)記為:線面平行則線線平行。

      符號(hào)表示:

      a∥α

      aβa∥b

      α∩β=b

      作用:利用該定理可解決直線間的平行問題。

      2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

      符號(hào)表示:

      α∥β

      α∩γ=aa∥b

      β∩γ=b

      作用:可以由平面與平面平行得出直線與直線平行

      2.3直線、平面垂直的判定及其性質(zhì)

      2.3.1直線與平面垂直的判定

      1、定義

      如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

      2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

      注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

      b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

      2.3.2平面與平面垂直的判定

      1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形

      2、二面角的記法:二面角α-l-β或α-AB-β

      3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

      2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

      1、定理:垂直于同一個(gè)平面的兩條直線平行。

      2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

      高二數(shù)學(xué)知識(shí)點(diǎn)13

      用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

      1、本均值:

      2、樣本標(biāo)準(zhǔn)差:

      3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

      雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

      4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變

      (2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

      (3)一組數(shù)據(jù)中的值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

      “去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理

      高二數(shù)學(xué)知識(shí)點(diǎn)14

      等差數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。

      那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:

      將以上n—1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項(xiàng)公式。

      此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。

      值得說明的是,前n項(xiàng)的和Sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。

      等比數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。

      那么,通項(xiàng)公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的思想:

      a2=a1Xq,

      a3=a2Xq,

      a4=a3Xq,

      ````````

      an=an—1Xq,

      將以上(n—1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。

      此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1Xn

      當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1X(1—q^(n))/(1—q)。

      高二數(shù)學(xué)知識(shí)點(diǎn)15

      排列組合公式/排列組合計(jì)算公式

      排列P——————和順序有關(guān)

      組合C———————不牽涉到順序的問題

      排列分順序,組合不分

      例如把5本不同的書分給3個(gè)人,有幾種分法。"排列"

      把5本書分給3個(gè)人,有幾種分法"組合"

      1.排列及計(jì)算公式

      從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示。

      p(n,m)=n(n—1)(n—2)……(n—m+1)=n!/(n—m)!(規(guī)定0!=1)。

      2.組合及計(jì)算公式

      從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。用符號(hào)

      c(n,m)表示。

      c(n,m)=p(n,m)/m!=n!/((n—m)!xm!);c(n,m)=c(n,n—m);

      3.其他排列與組合公式

      從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n—r)!。

      n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,..nk這n個(gè)元素的全排列數(shù)為n!/(n1!xn2!x..xnk!)。

      k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k—1,m)。

      排列(Pnm(n為下標(biāo),m為上標(biāo)))

      Pnm=n×(n—1)....(n—m+1);Pnm=n!/(n—m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

      組合(Cnm(n為下標(biāo),m為上標(biāo)))

      Cnm=Pnm/Pmm;Cnm=n!/m!(n—m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn—m

      2008—07—0813:30

      公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N—元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!—階乘,如9!=9x8x7x6x5x4x3x2x1

      從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為nx(n—1)x(n—2),(n—r+1);

      因?yàn)閺膎到(n—r+1)個(gè)數(shù)為n—(n—r+1)=r

      舉例:

      Q1:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,可以組成多少個(gè)三位數(shù)?

      A1:123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。

      上問題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9—1種可能,個(gè)位數(shù)則應(yīng)該只有9—1—1種可能,最終共有9x8x7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9x8x7,(從9倒數(shù)3個(gè)的乘積)

      Q2:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,如果三個(gè)一組,代表“三國(guó)聯(lián)盟”,可以組合成多少個(gè)“三國(guó)聯(lián)盟”?

      A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。

      上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9x8x7/3x2x1

      排列、組合的概念和公式典型例題分析

      例1設(shè)有3名學(xué)生和4個(gè)課外小組。

      (1)每名學(xué)生都只參加一個(gè)課外小組;

      (2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加。各有多少種不同同方法?

      解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法。

      (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法。

      點(diǎn)評(píng)由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算。

      例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

      解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

      ∴符合題意的不同排法共有9種。

      點(diǎn)評(píng)按照分“類”的思路,本題應(yīng)用了加法原理。為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型。

      例3判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果。

      (1)高三年級(jí)學(xué)生會(huì)有11人:

      ①每?jī)扇嘶ネㄒ环庑牛餐硕嗌俜庑牛?/p>

      ②每?jī)扇嘶ノ樟艘淮问郑参樟硕嗌俅问郑?/p>

      (2)高二年級(jí)數(shù)學(xué)課外小組共10人:

      ①?gòu)闹羞x一名正組長(zhǎng)和一名副組長(zhǎng),共有多少種不同的選法?

      ②從中選2名參加省數(shù)學(xué)競(jìng)賽,有多少種不同的選法?

      (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):

      ①?gòu)闹腥稳蓚(gè)數(shù)求它們的商可以有多少種不同的商?

      ②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?

      (4)有8盆花:①?gòu)闹羞x出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?

      ②從中選出2盆放在教室有多少種不同的選法?

      分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jī)扇嘶ノ找淮问郑着c乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題。其他類似分析。

      (1)①是排列問題,共用了封信;

      ②是組合問題,共需握手(次)。

      (2)①是排列問題,共有(種)不同的選法;

      ②是組合問題,共有種不同的選法。

      (3)①是排列問題,共有種不同的商;

      ②是組合問題,共有種不同的積。

      (4)①是排列問題,共有種不同的選法;

      ②是組合問題,共有種不同的選法。

      例4證明。

      證明左式

      右式。

      ∴等式成立。

      點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡(jiǎn)化。

      例5化簡(jiǎn)。

      解法一原式

      解法二原式

      點(diǎn)評(píng)解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡(jiǎn)化。

      例6解方程:(1);(2)。

      解(1)原方程

      解得。

      (2)原方程可變?yōu)?/p>

      ∵,,

      ∴原方程可化為。

      即,解得

      第六章排列組合、二項(xiàng)式定理

      一、考綱要求

      1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡(jiǎn)單的問題。

      2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的問題。

      3.掌握二項(xiàng)式定理和二項(xiàng)式系數(shù)的性質(zhì),并能用它們計(jì)算和論證一些簡(jiǎn)單問題。

      二、知識(shí)結(jié)構(gòu)

      三、知識(shí)點(diǎn)、能力點(diǎn)提示

      (一)加法原理乘法原理

      說明加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排列、組合中有關(guān)問題提供了理論根據(jù)。

      高二數(shù)學(xué)知識(shí)點(diǎn)16

      在中國(guó)古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

      1.任意角

      (1)角的分類:

      ①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。

      ②按終邊位置不同分為象限角和軸線角。

      (2)終邊相同的角:

      終邊與角相同的角可寫成+k360(kZ)。

      (3)弧度制:

      ①1弧度的角:把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角。

      ②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時(shí)所對(duì)圓弧的長(zhǎng),r為半徑。

      ③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。

      ④弧度與角度的換算:360弧度;180弧度。

      ⑤弧長(zhǎng)公式:l=||r,扇形面積公式:S扇形=lr=||r2.

      2.任意角的三角函數(shù)

      (1)任意角的三角函數(shù)定義:

      設(shè)是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。

      (2)三角函數(shù)在各象限內(nèi)的符號(hào)口訣是:一全正、二正弦、三正切、四余弦。

      3.三角函數(shù)線

      設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長(zhǎng)線相交于點(diǎn)T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

      高二數(shù)學(xué)知識(shí)點(diǎn)17

      第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

      主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

      第二:平面向量和三角函數(shù)。

      重點(diǎn)考察三個(gè)方面:

      一個(gè)是劃減與求值。

      第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。

      第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì)。

      第三,正弦定理和余弦定理來解三角形。難度比較小。

      第三:數(shù)列。

      數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

      第四:空間向量和立體幾何。

      在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

      第五:概率和統(tǒng)計(jì)。

      這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面:

      第一……等可能的概率。

      第二………事件。

      第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

      第六:解析幾何。

      這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長(zhǎng)問題,第四類是對(duì)稱問題,這也是2008年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

      第七:押軸題。

      考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

      高二數(shù)學(xué)知識(shí)點(diǎn)18

      等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

      面積公式

      若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

      S=ab/2。

      且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

      S=ch/2=c2/4。

      等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

      反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

      反函數(shù)求導(dǎo)方法

      若F(X),G(X)互為反函數(shù),

      則:F'(X)_'(X)=1

      E.G.:y=arcsin_siny

      y'_'=1(arcsinx)'_siny)'=1

      y'=1/(siny)'=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-x^2)

      其余依此類推

      高二數(shù)學(xué)知識(shí)點(diǎn)19

      ●不等式

      1、不等式你會(huì)解么?你會(huì)解么?如果是寫解集不要忘記寫成集合形式!

      2、的解集是(1,3),那么的解集是什么?

      3、兩類恒成立問題圖象法——恒成立,則=?

      ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

      4、線性規(guī)劃問題

      (1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

      (2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)

      (3)平行直線系去畫

      5、基本不等式的形式和變形形式

      如a,b為正數(shù),a,b滿足,則ab的范圍是

      6、運(yùn)用基本不等式求最值要注意:一正二定三相等!

      如的最小值是的最小值(不要忘記交代是什么時(shí)候取到=!!)

      一個(gè)非常重要的函數(shù)——對(duì)勾函數(shù)的圖象是什么?

      運(yùn)用對(duì)勾函數(shù)來處理下面問題的最小值是

      7、★★兩種題型:

      和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?

      和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?

      不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?

      高二數(shù)學(xué)知識(shí)點(diǎn)20

      一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

      1、集合;

      2、子集;

      3、補(bǔ)集;

      4、交集;

      5、并集;

      6、邏輯連結(jié)詞;

      7、四種命題;

      8、充要條件。

      二、函數(shù)(30課時(shí),12個(gè))

      1、映射;

      2、函數(shù);

      3、函數(shù)的單調(diào)性;

      4、反函數(shù);

      5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

      6、指數(shù)概念的擴(kuò)充;

      7、有理指數(shù)冪的運(yùn)算;

      8、指數(shù)函數(shù);

      9、對(duì)數(shù);

      10、對(duì)數(shù)的運(yùn)算性質(zhì);

      11、對(duì)數(shù)函數(shù)。

      12、函數(shù)的應(yīng)用舉例。

      三、數(shù)列(12課時(shí),5個(gè))

      1、數(shù)列;

      2、等差數(shù)列及其通項(xiàng)公式;

      3、等差數(shù)列前n項(xiàng)和公式;

      4、等比數(shù)列及其通頂公式;

      5、等比數(shù)列前n項(xiàng)和公式。

      四、三角函數(shù)(46課時(shí),17個(gè))

      1、角的概念的推廣;

      2、弧度制;

      3、任意角的三角函數(shù);

      4、單位圓中的三角函數(shù)線;

      5、同角三角函數(shù)的基本關(guān)系式;

      6、正弦、余弦的誘導(dǎo)公式;

      7、兩角和與差的正弦、余弦、正切;

      8、二倍角的正弦、余弦、正切;

      9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

      10、周期函數(shù);

      11、函數(shù)的奇偶性;

      12、函數(shù)的圖象;

      13、正切函數(shù)的圖象和性質(zhì);

      14、已知三角函數(shù)值求角;

      15、正弦定理;

      16、余弦定理;

      17、斜三角形解法舉例。

      五、平面向量(12課時(shí),8個(gè))

      1、向量;

      2、向量的加法與減法;

      3、實(shí)數(shù)與向量的積;

      4、平面向量的坐標(biāo)表示;

      5、線段的定比分點(diǎn);

      6、平面向量的數(shù)量積;

      7、平面兩點(diǎn)間的距離;

      8、平移。

      六、不等式(22課時(shí),5個(gè))

      1、不等式;

      2、不等式的基本性質(zhì);

      3、不等式的證明;

      4、不等式的解法;

      5、含絕對(duì)值的不等式。

      七、直線和圓的方程(22課時(shí),12個(gè))

      1、直線的傾斜角和斜率;

      2、直線方程的點(diǎn)斜式和兩點(diǎn)式;

      3、直線方程的一般式;

      4、兩條直線平行與垂直的條件;

      5、兩條直線的交角;

      6、點(diǎn)到直線的距離;

      7、用二元一次不等式表示平面區(qū)域;

      8、簡(jiǎn)單線性規(guī)劃問題;

      9、曲線與方程的概念;

      10、由已知條件列出曲線方程;

      11、圓的標(biāo)準(zhǔn)方程和一般方程;

      12、圓的參數(shù)方程。

    【高二數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

    高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)12-02

    高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-22

    數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)04-22

    高二數(shù)學(xué)的知識(shí)點(diǎn)整理02-24

    高二數(shù)學(xué)的數(shù)列知識(shí)點(diǎn)總結(jié)03-30

    高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)03-30

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-04

    數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納12-29

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-19

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-04

    主站蜘蛛池模板: 欧美大屁股流白浆xxxx| 亚洲精品无码一区二区| 国产suv精品一区二区883| 77777亚洲午夜久久多人| 熟女熟妇伦av网站| 久久久久无码精品亚洲日韩| 久久久久久性高| 五月av综合av国产av| 中文字幕永久精品国产| 天天爽夜夜爱| 亚洲精品毛片一区二区 | 无码人妻一区二区三区av | 日韩亚洲国产主播在线不卡| 真人无码作爱免费视频网站| 精品无码国产污污污免费网站国产| 久久―日本道色综合久久| 亚洲中文字幕日产乱码高清| 欧美黑人又粗又硬xxxxx喷水 | 亚洲人成伊人成综合网中文| 国产成人免费无码av在线播放| 丰满少妇被猛烈进入毛片| 肉体裸交丰满丰满少妇在线观看| 亚洲熟妇少妇任你躁在线观看无码| 亚洲国产成人极品综合| 国产精品久久久久久福利| 18禁超污无遮挡无码免费游戏| 人妻少妇av无码一区二区| 国产成人亚洲综合图区| 欧美专区日韩视频人妻| 成人做受120秒试看试看视频| 久久精品女人天堂av| 爆乳2把你榨干哦ova在线观看 | 午夜精品久久久久9999高清| 99久久国产成人免费网站| 欧洲美熟女乱av在| 国产午夜福利在线机视频| 亚洲色成人网站www永久四虎| 日本人妻伦在线中文字幕| 成人亚洲国产精品一区不卡| 亚洲精品无码日韩国产不卡av| 国产一区二区日韩经典|